
Supplemental Materials - Node Graph Optimization Using Differentiable
Proxies
YIWEI HU, Yale University, USA and Adobe Research, USA
PAUL GUERRERO, Adobe Research, UK
MILOŠ HAŠAN, Adobe Research, USA
HOLLY RUSHMEIER, Yale University, USA
VALENTIN DESCHAINTRE, Adobe Research, UK
ACM Reference Format:
Yiwei Hu, Paul Guerrero, Miloš Hašan, Holly Rushmeier, and Valentin De-
schaintre. 2022. Supplemental Materials - Node Graph Optimization Using
Differentiable Proxies. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Proceedings (SIGGRAPH ’22 Conference
Proceedings), August 7–11, 2022, Vancouver, BC, Canada. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3528233.3530733

1 EXAMPLES OF DIFFERENTIABLE PROXIES
We show in Fig. 7 examples of all our trained differentiable proxies.
We see that we closely match the original generator in all cases. The
generators with high stochasticity benefit from a relaxed training
loss, through the addition of an adversarial term, which allows to
optimize the loss without pixel perfect proxy generation, because
the per-pixel accuracy tends to be less important for stochastic
patterns. The following proxies where trained with the additional
adversarial term:

• Scratch generator
• Tile Generator (Paraboloid)
• PPTBF [Guehl et al. 2020]

The additional adversarial term is weighed down, typically with a
factor 0.1 to augment the main three losses described in the paper
(𝐿1, 𝐿feat, 𝐿style) without replacing the main goal of the training —
reproducing the original generator as closely as possible.

2 CHOICES OF PROXY
To find the ideal differentiable proxy with an optimal latent repre-
sentation, we evaluate three network architectures: an autoencoder,
a GAN and our approach.

2.1 AutoEncoder as Proxy
We tried to define the optimization space using a 2D Convolutional
AutoEncoder, designed after the one used in [Gao et al. 2019]. We
slightly reduce the latent space 𝑍 size to 4x4x256 as we only train
for single-channel mask maps (as opposed to material maps in the
original paper). We train this AutoEncoder to reconstruct the input

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00
https://doi.org/10.1145/3528233.3530733

Init. AutoEncoder Optim. Target

Fig. 1. Results by using an autoencoder as proxy. Inset shows mask maps
outputted by the decoder before/after optimization. We initialize the latent
space by randomly sampling mask maps, projecting them to the latent space
by encoder and averaging the latent codes. The optimized material looks
good but the mask are far from a procedural one because the latent space
is less constraint.

image generated by the real generators in the same way as our
method described in the main paper. The hypothesis is that by opti-
mizing the latent space 𝑍 only, we could force the optimization to
remain in the original generator manifold. During optimization to
match a target appearance, we use the decoder of our pre-trained
AutoEncoder network, and perform optimization in its latent space
𝑍 . The trained AutoEncoder reconstructs the input generator map
well, but is not constrained enough, as shown in Fig. 1. We see that
the optimized material appearance is close to the target, but the gen-
erator maps (insets) cannot be represented by the original generator.
The optimization leads the latent space outside the manifold of the
original generator.

2.2 StyleGAN as Proxy
To better constrain the optimization space, we experimented with
training a generativemodel (StyleGAN2 [Karras et al. 2020]) as proxy
as described in the main paper. In our optimization experiments,
we initialize the latent code with the mean of 10,000 randomly
sampled Gaussian, as proposed in [Karras et al. 2020]. We optimize
the StyleGAN2’s𝑊 + latent space to match the structure. However,
results (Fig. 2, similar to the main paper) show that the latent space
of a GAN is still expressive beyond the original generator scope.

1

https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Hu et al.

Init. StyleGAN2 Optim. Target

Fig. 2. Result showing the problem with using the original StyleGAN2 archi-
tecture as differentiable proxy. Insets represent generator maps synthesized
by the trained proxy before/after optimization. We see that it fails to gener-
ate a good pattern to match the target.

Additionally, we note that both these solutions (AE & GAN) rely
on complex latent spaces 𝑍 which would require to train an addi-
tional network per proxy to map 𝑍 to the original generator param-
eter space.

2.3 Our Architecture
To constrain the optimization to the original generator space, we
perform three changes to the original StyleGAN.

• We replace the randomly sampled latent space 𝑍 with nor-
malized parameters 𝑃 of the original generator 𝑓 . We know
that a function 𝑓 exists such that 𝑓 (𝑃) = 𝑀 , with𝑀 the tar-
get generator map, making 𝑃 a great input to our network 𝑓 ,
which learns to approximate 𝑓 . Importantly, using 𝑃 to guide
𝑓 enables direct optimization of the procedural parameters.

• As we aim at a deterministic one-to-one mapping from pa-
rameters to generator maps, we remove the noise inputs at
each AdaIn block which are a source of stochasticity.

• We change the loss to enforce a strong local coherency with
𝐿1, 𝐿feat and 𝐿style, which we can enforce because we aim at
approximating 𝑓 exactly, with as little variation as possible,
to make the projection from the proxy parameters to the
original generator parameters as transparent as possible.

3 MATERIAL GRAPH OPTIMIZATION

3.1 Optimization Results
We show additional comparison results to Hu et al. [2022] in Fig. 6.
All material optimization results are included in our supplemental
HTML on three different pages.
The first page, titled "Our Optimization Results with Material

Maps and Optimization Sequence" shows our results on real pho-
tographs and synthetic targets. We show the target appearance, the
initialization of our optimization and the optimization of the Stage
II after the random initialization described in Sec. 3.4 of the main
paper. We also show our optimized results, a video illustrating the

Init MATch Final Target

Init Our Random Init Ours Target
Fig. 3. Sometimes, applying MATch framework first leads the filter nodes’
parameters in a local minimum, making our own optimization difficult (first
row, Final). In these rare cases, we do not use the MATch output, but directly
initialize the optimization with our Stage II initialization step (second row).

progression of the optimization Stage II and III, and final optimized
material maps.
The second page, titled "Comparison with MATch" shows all

our results with a comparison with the MATch [Shi et al. 2020]
framework.

In the third page "Differentiable Proxy in Hu et al.’s Framework"
we show that our differentiable proxy can be generalized to benefit
the recent inverse material modeling framework by [Hu et al. 2022]
and compare with their results. Their optimization of the structure
requires 20 minutes, when ours requires 30 seconds.

3.2 MATch as Initialization
As mentioned in the paper, in some cases, the first stage of the
optimization (MATch) doesn’t help get closer to the final desired
appearance, and optimizes the filter parameters to local minima from
which it is difficult to get out. In such case we simply discard this
step and directly use the random initialization described in Sec. 3.4
of the main paper, allowing to jointly optimize the structure, helping
to avoid the local minima. A typical example of this phenomena can
be seen in Fig. 3.

3.3 Generator Initialization
We show in Fig. 4 examples of results of our method without our
initialization strategy of generators, described in Sec. 3.4 of the main
paper. Without a proper initialization, the optimization sometimes
stays trapped in a local minimum and struggles to recover.

3.4 Post Optimization
As demonstrated in the main paper, our post-optimization step
helps improve the final quality. As small errors can be introduced
by replacing our proxy with the real generator, this fine-tuning step
helps reach the best possible match. Similar to the main paper, we
show such a refinement in Fig. 5 and more results can be seen in
our videos "Optimization Proc." (The second half of each video is
this post optimization step).

2

Supplemental Materials - Node Graph Optimization Using Differentiable Proxies SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Init (bad) After Stage II After Stage III

Random Init (Good) Final Target
Fig. 4. We show a case where initialization of the generator is not good
without random searching at the beginning of Stage II. The optimization
sometimes could be trapped to a weird local minima (After Stage II), and
the post-optimization step cannot rectify its appearance (After Stage III),
making the whole optimization fails. While with random searching, a good
initialization is found, which provides reasonable final optimized material.

Input MATch (Stage I) Stage II

Stage II* Refined Target
Fig. 5. We optimize a leather material (Input) to match a scratched potato
skin (Target). We first match the overall material parameters such as color or
roughness (MATch, Stage I). After global optimization (Stage II), we retrieve
correct scratch patterns. We then replace our proxy with the real generator
(Stage II*) and re-optimize the filter nodes with fixed generators and a
smaller learning rate, refining the result (Refined) to best match the target.

4 DIFFERENTIATING FROM RECENT WORK

4.1 Differentiable Rendering
Previous differentiable rendering work [Bangaru et al. 2021; Li
et al. 2020] focuses on estimating accurate derivatives of pixel val-
ues when image-space/path-space discontinuities are present (e.g.,
boundaries of a moving object), which is different from our work.
We instead deal with the discontinuities in input parameters of the
procedures; these can be discrete, or can have non-differentiable

Input Hu et al. Ours

Fig. 6. We plug our differentiable PPTBF proxy in Hu et al.’s [2022] frame-
work. Their framework optimizes parameters of a procedural PPTBF mask
to match a user-segmented mask map with a gradient-free method, taking
20 minutes. Using SGD, enabled by our proxy, we achieve similar results in
30 seconds. The first three materials are synthetic while the last four are
real data. See ppbtf.html for individual synthesized material maps.

3

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Hu et al.

effects (e.g., parameters control the level of randomness of inten-
sity/angles/sizes of patterns).
More generally, generator nodes we consider can be arbitrary

pieces of code, often without published source code. Our differen-
tiable proxies allow us to learn a continuous space and differentiate
through black box functions for which a clearly defined gradient
does not exist, or cannot be determined explicitly.

4.2 StyleGAN Derivatives
Lots of recent work is derived from StyleGAN architecture [Richard-
son et al. 2021; Tov et al. 2021]. These methods attempt to encode an
image directly to the latent code of a pre-trained StyleGAN without
optimization. There are significant differences.
First, our proxy is not a generative model: there is only one sin-

gle correct output for a given input, and the inputs are explicitly
interpretable parameters rather than images. We chose StyleGAN
because we found its architecture powerful for learning this map-
ping but modified it to suit our task. Second, our approach is not
an encoder. One can train an encoder to directly map a material
target image to parameters of nodes (similar to Hu et al. [2019]
and MATch’s neural initialization [Shi et al. 2020]), but the result-
ing quality was shown to be significantly lower than optimization
approaches like ours.

REFERENCES
Sai Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan

Ragan-Kelley. 2021. Systematically Differentiating Parametric Discontinuities. ACM
Trans. Graph. 40, 107 (2021), 107:1–107:17.

Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse
Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number
of Images. ACM Trans. Graph. 38, 4, Article 134 (July 2019), 15 pages. https:
//doi.org/10.1145/3306346.3323042

Pascal Guehl, Remi Allègre, Jean-Michel Dischler, Bedrich Benes, and Eric Galin. 2020.
Semi-Procedural Textures Using Point Process Texture Basis Functions. Computer
Graphics Forum 39, 4 (2020), 159–171. https://doi.org/10.1111/cgf.14061

Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for Inverse
Procedural Texture Modeling. ACM Trans. Graph. 38, 6, Article 186 (Nov. 2019),
14 pages. https://doi.org/10.1145/3355089.3356516

Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022.
An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Trans. Graph. 41,
2, Article 18 (jan 2022), 17 pages. https://doi.org/10.1145/3502431

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. 2020. Training Generative Adversarial Networks with Limited Data. In Proc.
NeurIPS.

Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020. Differen-
tiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro,
and Daniel Cohen-Or. 2021. Encoding in Style: a StyleGAN Encoder for Image-to-
Image Translation. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6 (Dec. 2020), 1–15.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. 2021.
Designing an Encoder for StyleGAN Image Manipulation. ACM Trans. Graph. 40, 4,
Article 133 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459838

4

https://doi.org/10.1145/3306346.3323042
https://doi.org/10.1145/3306346.3323042
https://doi.org/10.1111/cgf.14061
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3502431
https://doi.org/10.1145/3450626.3459838

Supplemental Materials - Node Graph Optimization Using Differentiable Proxies SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Real Approx. Real Approx. Real Approx.

Br
ic
k

St
rip

e
Sc
ra
tc
h

Ti
le
(P
ar
ab
ol
oi
d)

Ti
le
(B
ric

k)
A
rc

Pa
ve
m
en
t

PP
TB

F

Fig. 7. We compare generator maps synthesized by our proxies (Approx.) with their original procedural counterpart (Real) via randomly sampled parameters,
showing that they are very close for all generators

5

	1 Examples of Differentiable Proxies
	2 Choices of Proxy
	2.1 AutoEncoder as Proxy
	2.2 StyleGAN as Proxy
	2.3 Our Architecture

	3 Material Graph Optimization
	3.1 Optimization Results
	3.2 MATch as Initialization
	3.3 Generator Initialization
	3.4 Post Optimization

	4 Differentiating from Recent Work
	4.1 Differentiable Rendering
	4.2 StyleGAN Derivatives

	References

