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1 SVBRDF DECOMPOSITION RESULTS
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Fig. 1. Results of our SVBRDF decomposition method. We show our method
can decompose material maps with various spatial structures in a few
scribbles by the user. User scribbles are visualized as an additional layer
superimposed over material maps, where blue and green scribbles specify
different sub-materials.

We evaluate the efficiency of our interactive SVBRDF decomposi-
tion method. Fig. 1 contains decomposition results of various spatial
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structures which are achieved in a few scribbles by the user. Typi-
cally, one or two scribbles for each sub-material are enough to obtain
good results, and the marking for sub-materials does not need to
be careful or precise. For the material maps we experimented with,
this process takes less than 2 minutes depending on the complexity
of the input material maps.

2 COMPARISON RESULTS
In this section, we show our comparison results. Fig. 2 & 3 shows a
comparison between our method with the state-of-the-art inverse
material modeling methods. Different from ours, both of their frame-
works require a collection of pre-definedmaterial graphs.We applied
[Hu et al. 2019]’s method to select a model from the database and
use it as auxiliary input for their parameter estimation.

Input Hu et al. (a) Hu et al. (b) Ours
Fig. 2. Comparison of our method to [Hu et al. 2019]. The second column
shows predicted procedural results by [Hu et al. 2019] while the third column
is their style augmented results (non-procedural and no edibility). In contrast
to their method, our pipeline generates fully procedural materials without a
pre-existing material graph as an auxiliary input. The images are rendered
using Blender with diffuse reflectance to match [Hu et al. 2019].
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Fig. 3. Comparison of ourmethod toMATch [2020].We use Hu et al. [2019]’s
framework to select a close Substance model, and use MATch to optimize its
appearance. As the MATch framework does not handle discrete parameters
and requires good initialization, it can generate poor output if the initializa-
tion and the discrete parameters are not hand-tuned (as seen in the brick
materials). Materials are rendered using the GGX shading model.

We include comparison with the state-of-the-art example-based
texture synthesis in Fig. 4. We generalize their methods, which
are originally designed to process color textures, to process multi-
channel SVBRDF maps by stacking albedo map, normal and rough-
ness maps together as their input. For self-tuning texture optimiza-
tion [Kaspar et al. 2015], its generalization to multi-channel material
maps is not trivial and we therefore run their algorithm separately
on each material map. Since we synthesize each material map indi-
vidually, structure mismatches arise leading to visible limitations in
renderings.
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Fig. 4. Comparison of our method with example-based texture synthesis methods on SVBRDF maps. We generalize these methods to process multi-channel
SVBRDF maps. We show our method; InGAN [Shocher et al. 2019]; Non-stationary Texture Synthesis by Adversarial Expansion [Zhou et al. 2018]; Self-tuning
Texture Optimization [Kaspar et al. 2015]; ImageQuilting [Efros and Freeman 2001]. Images shown here are rendered with the GGX shading model.
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